
Starwire[®] Radiating Coaxial Cables

7/8" TO 1-5/8"

Sponsored by

Preliminary Remarks

The present catalogue has been conceived in this format by CPE Italia SpA.

Aiming to show to Telecommunication Customers its flexibility, its potentiality, its involvement in the Customer successful solution, CPE Italia SpA has grouped in the following pages all products needed to implement an installation: cables, connectors to assemble the cables with an indeed very exhaustive range of configurations, accessories (grounding kits, cable clamps, tools, etc).

Throughout all shown products, Customer can just select what is more suitable to satisfy its requirements ... without worrying about quality: it is assured by CPE Italia SpA.

In fact, everything is supervised by CPE Italia SpA:

- Cables: For any reason, Customer may wish to use a specific brand already qualified and used within his organization and well accepted.

CPE ITALIA SpA, because of its vast experience on the market can fulfil his specific request. In the same time, CPE ITALIA SpA, by means of

STARWIRE ENGINEERING (SWE)

made by a group of highly skilled specialists and consultants driving some cable manufacturers, can provide to Customers the necessary cable with any desired characteristics and an outstanding quality.

Only the cables produced under the direct supervision of STARWIRE ENGINEERING Group constitute the Starwire $^{\rm \circ}$ Product line.

- Connectors and adapters: no doubt about the competence of CPE Italia SpA on this domain: since 1998, its products received the "Declaration of Conformity" by the Communication Ministry. Definition of connector characteristics through its R&D office as well as the capability of production on its own is a fact started almost 15 years ago.
- Assembling: this is an other activity lasting since years. Also on this matter there is an award of the same Ministry but, in addition, there is the satisfaction of many Customers: the production average in the last 5 years is of 1.2 Million assembled cables/year.
- Grounding kit: an other design coming out from our R&D Group. Fully qualified by CESI (Italian Experimental Centre for Electricity), is produced by CPE Italia SpA at a volume of .5 Million pcs/year
- The same R&D Group, by gathering years and years of experience has defined the specifications and the production process definition of many other products: Clamps, Adapters, Connectors for elliptical wave guides, Assembled racks to interface different mobile phone operators, etc.

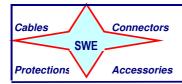
Conclusion: we strongly hope that the present catalogue will helpfully give to our Telecommunication Customer an exhaustive idea of its capabilities, its extensive experiences, its broad connection with extremely important Partners.

All this background, gathered in more than 30 years of presence on the market, is the key factor allowing CPE Italia SpA to offer to his Customers the best service, assistance and advises possible.

Connection Technology for Wireless Communication Systems

Due to its almost unique value added chain, CPE ITALIA SpA along with STARWIRE ENGINEERING Group is able to offer cable solutions both with copper and fiber optic elements, making up standard as well as special or hybrid cables according to our customer's requirements or whole cable systems for their optimal solutions.

Products are manufactured in selected plants scattered around the world. All these plants certified by STARWIRE ENGINEERING Group offer high-quality and environmentally compatible products (DIN EN ISO 9001 and DIN EN ISO 14001, DIN EN 9100).


CPE ITALIA SpA offers a comprehensive product range of cables, connectors and accessories for **Mobile Network Solutions,** such as GSM, CDMA, 3G, WiMAX and radio link systems. Our **Starwire**[®] product line offer the whole of **Connection Technology for Wireless Communications Systems** and will be highlighted in this catalogue. Feel free to contact our sales team if you are looking for further information on a product or any other site solution to suit your special application. We are happy to provide you with the perfect cable or cable system solution!

R	
Inistero delle Comunicazioni	
Istituto Superiore delle Comunicazioni e delle Tecnologie dell'Informazione	
CERTIFICAZIONE DI CONFORMITA'	
Declaration of conformity N* ISCT1/3/4/98/C005	
In relazione alla richiesta della: C.P.E. Italia S.p.A. With reference to the request of:	
SI CERTIFICA CHE : sue certify blat	
Connettori coassiali Coattal connectors:	
Modello 58 per ani TRUNK Model 58 for TRUNK cable	
Caratteristiche tecniche: come da rapporto finale Technical charatteristica as reported in the final report	
Prodotto dalla Società: C.P.E. Italia S.p.A.	
A SEGUITO DEGLI ESAMI E DELLE PROVE EFFETTUATE,	
on the basis of tests and measurements performed ,	
E ' C O N F O R M E It is in compliance with	
a(n): Capitolato tecnico TELECOM C.T. 1447 Rev.2 – Ed.Novembre '97	
Data di emissione: $6/5/3\chi$	
Issued on I birg triore	
<u> </u>	
	_
ISTITUTO SUPERIORE DELLE COMUNICAZIONI E DELLE TECNOLOGIE DELL'INFORMAZIONE	
ISTITUTO SUPERIORE DELLE COMUNICAZIONE E DELLE TECNOLOGIE DELL'INFORMAZIONE CERTIFICATO DI CONFORMITA'	
ENTITIO SUPERIORE DELLE COMUNICATION E DELLE TECNOLOGIE DELL'INFORMATIONE CERTIFICATO DI CONFORMITA' Declaration of conformity	
ISTITUTO SUPERMEE BALLE COMENCESIONE E BALLE TECONICORE MELL'INFORMATIONE CERTIFICATIONE IN CONFORMITA L'Adamition of conference SPETAMEMECUL	
INTERIOR SOURCEMENT ENTER CONSIGNMENT ENTER TECONOLOGIC MELL'APORALIZANCE CUELTURA DE CONSIGNATIONE La Caracteria de Conference Martine alle réalisation de la Caracteria de Caracteria de Caracte	
INTRODUCTION CONTRACT OF CONTR	
<text><section-header><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
INTRODUCTION CONTRACT OF CONTR	
<text><section-header><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
<text><section-header><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
<text><section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
<text><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
<text><section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
<text><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></text>	
<text><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></text>	
<text><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></text>	
<text><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></text>	

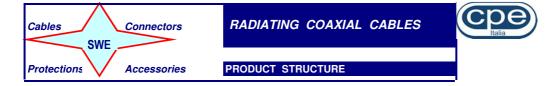
Contents	Page
Product Introduction Order Code Rules	2 3 to 4
Radiating Coaxial Cables	
RMC 75 Series (75 Ohm) RMC 50L Low Loss Series (from 75 up to 450 Mhz) RMC 50LM Low Loss Series (from 75 up to 900 Mhz) RMC 50 MH Low Loss Series (from 150 Mhz to 2.4 Ghz) RMC 50 LMH Low Loss Series (from 75 Mhz to 2.6 Ghz) RMC 50L (from 75 up to 450 Mhz) RMC 50LM (from 75 up to 900 Mhz) RMC 50 MH (from 150 Mhz to 2.4 Ghz) RMC 50 LMH (from 75 Mhz to 2.6 Ghz) CMC50 Series (from 150 Mhz to 2.4 Ghz) CMC50D Low Loss Series CMC50B Series Connectors Accessories	5 6 7 8 9 10 11 12 13 14 to 17 18 to 21 22 23 24 to 28 20 to 20
Quality and Certifications Notes	29 to 30
Sales Network	

PRODUCT INTRODUCTION

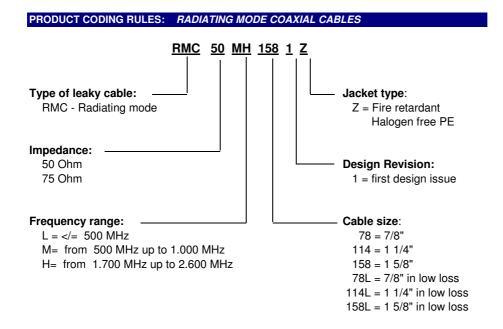
Radiating Cable is a kind of coaxial cable whose outer conductor is incompletely sealed. During the signal transmission within radiating cable, part of the radio frequency signal can be coupled to outer space through the outer conductor slots. On the contrary, the radio frequency signal of the outer space can also be coupled into the inner part of the radiating cable through the outer conductor slots. So radiating cable has the twofold purpose to work as a transmission line and as a transmitting-receiving antenna.

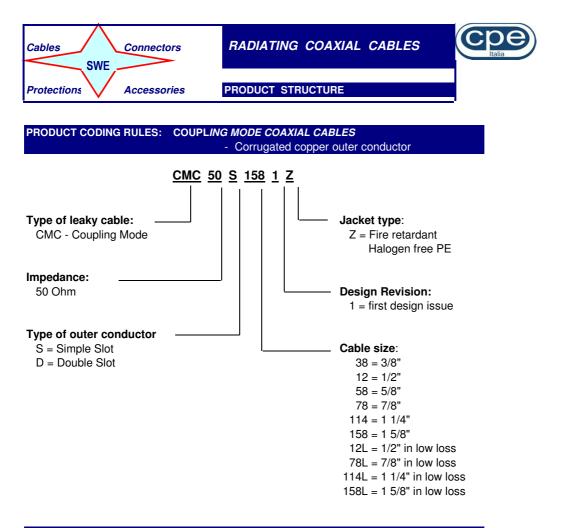
Radiating cables are generally used in a specific space where normal communication antenna has difficulty if not impossibility to play a role, especially in the telecommunication system where an individual antenna would not provide adeguate coverage. That means that radiating coaxial cable can adequately cover the weak or blind areas of mobile telecommunications.

CHARACTERISTICS

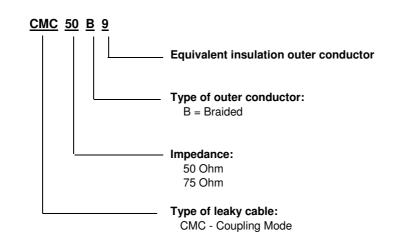

Through special structures designing and slot optimization grouping, the family of radiating coaxial cables shown on the catalogue have outstanding transmitting performances such as:

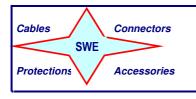
- Low attenuation
- Stable transmitting performances
- Excellent field strength covering performances
- Non-Contaminating fire retardant PE outer sheath without halogen

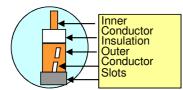

APPLICATIONS


After special designing, radiating coaxial cable is mainly applied in tunnels, mines, intelligent buildings and railways where radio signals can be hardly transmitted or they cannot be transmitted at all in wireless telecommunications and TETRA system. The concrete applications are:

- GSM-R telecommunication system along the railway
- Mobile telecommunication system in urban track traffic (such as light rail, metro, magnetically levitated train, etc.)
- Information transmission in the FM frequency and wireless alarm signal
- Mobile telecommunication in sealed or relatively sealed buildings such as intelligent buildings, large export area, underground parks, supermrkets, etc.
- Security alarm monitor system, such as airport caution areas, military target areas, airport security systems, etc.
- Government organizations or personal target protection area (i.e.banks)




- Inner Conductor: it is a wire made of copper-clad aluminium, smooth copper tube or corrugated copper tube according to the conductor size.
- Insulation: it has a cellular foaming polyethylene structure. It is manufactured by a unique process by using an ozone -friendly gas. The high foaming degree guarantees low longitudinal attenuation. The foaming insulation is bonded to the inner conductor by a pre-coating layer. This layer ensures good adhesion of the inner conductor to the insulation. It also allows an easy, complete removal of the dielectrict during connector installation.
- Outer Conductor: For radiation mode cable (RMC) an overlapping copper foil with punched slots is used. For coupling mode cabling (CMC) a corrugated copper tube with milled slots or braiding structure is used.
- **Taped covering** (optional): to overlap the copper foil outer conductor, an additional layer of tape is used to ensure the structural stability of the outer condctor during the process of production and application. Fire-retardant materials such as mica tape, can be used according to Customer demands.
- Jacket: The standard cable construction uses weather-resistant black polyethylene as the outer jacket. Cables are also available with a flame retardant and haloge-free outer jacket for applications requiring these features.


PRODUCT CODING RULES: COUPLING MODE COAXIAL CABLES
- Sparsely braided outer conductor

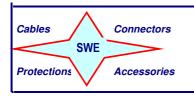
Construction and Specifications

<u>Typical application:</u> High steady communication system in wireless dispatch of railway, especially in mountain areas, tunnels, subways, etc.

RMC 75L SER	RIES	RMC 75L-114-1	RMC 75L-114-2	RMC 75L-114-3
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	7,80	7,80	7,80
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	32,50	32,50	32,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	32,70	32,70	32,70
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
JAUNET	Diameter mm	37,00	37,00	37,00

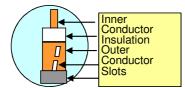
MECHANICAL PROPERTIES						
Bending radius	mm	380	380	380		
Pulling strengh	Ν	3000	3000	3000		
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C		
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C		
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C		

ELECTRICAL PRO	ELECTRICAL PROPERTIES					
Impedance	Ohm	75+/-2	75+/-2	75+/-2		
Capacitance	pF/m	50	50	50		
Propagation velocity	%	88	88	88		
Insulation Dielectric S	Strenght kVI	10,0	10,0	10,0		
Jacket spark test volta	age kVAC	10,0	10,0	10,0		
Insulation Resistance	Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³		
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td		


ATTENUATION and COUPLING LOSS**				
Nominal Attenuation 20°C,dB/100m at 450 MHz	2,50	2,70	3,60	
Coupling Loss*** (50%/95%) dB at 450 MHz	82	72	62	

NOTES:

**


Bending Test Method is according to IEC 61196.1

Attenuation and CouplingLoss are measured by the free space method according to IEC 611960.4.

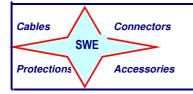
Construction and Specifications

<u>Typical application:</u> Suitable for various types of analog, digital, wireless communication for which the operating frequency is less than 500 MHz, such as railways wireless dispatching on 450 MHz, public security and fire protection dispatching on 350MHz, communications in mine on 150MHzfrequency, etc.

RMC 50L LOV	V LOSS SERIE	RMC 50L-78L-1	RMC 50L-114L-1	RMC 50L-158L-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,40	13,20	18,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	23,00	33,10	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	23,30	33,40	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
JAUNEI	Diameter mm	27,60	37,50	48,50

MECHANICAL PROPERTIES					
Bending radius	mm	280	381	508	
Pulling strengh	Ν	2300	3000	1700	
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C	
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C	
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C	

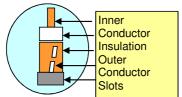
ELECTRICAL PRO	ELECTRICAL PROPERTIES					
Impedance	Ohm	50+/-1	50+/-1	50+/-1		
Capacitance	pF/m	76	76	76		
Propagation velocity	%	88	88	88		
Insulation Dielectric St	trenght kVI	10,0	10,0	15,0		
Jacket spark test volta	ige kVAC	8,0	10,0	10,0		
Insulation Resistance	Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³		
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td		


ATTENUATION and COUPLING LOSS**							
Nominal	75 MHz	1,00	0,64	0,50			
Attenuation	150 MHz	1,40	0,94	0,66			
20°C,dB/100	350 MHz	2,60	1,60	1,20			
m	450 MHz	2,80	1,92	1,40			
Coupling	75 MHz	56/60	58/68	67/72			
Coupling Loss***	150 MHz	62/68	64/72	68/78			
(50%/95%)	350 MHz	53/56	56/61	65/70			
dB	450 MHz	55/60	56/62	66/69			

NOTES:

Bending Test Method is according to IEC 61196.1

** ***


Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

Construction and Specifications

<u>Typical application:</u> Suitable for various types of analog, digital wireless communication for which the operating frequency is below 1000 MHz, such as the TETRA system, GSM-R railway wireless dispatching, the mobile telecommunication system, also suitable for the above systems that also have a coverage below 500 MHz in the same occasion.

RMC 50LM LC	DW LOSS SER	RMC 50LM-78L-1	RMC 50LM-114L-1	RMC 50LM-158L-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,40	13,20	18,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSOLATON	Diameter mm	23,00	33,10	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	23,30	33,40	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
	Diameter mm	27,60	37,50	48,50
MECHANICAL	PROPERTIES	;		
Bending radius	mm	280	381	508
Pulling strengh	N	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES			
Impedance	Ohm	50+/-1	50+/-1	50+/-1
Capacitance	pF/m	76	76	76
Propagation velo	ocity %	88	88	88
Insulation Dielec	tric Strenght kVI	10,0	10,0	15,0
Jacket spark tes	t voltage kVAC	8,0	10,0	10,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPI	ING LOSS**		
	75 MHz	1,10	0,70	0,50
Nominal	150 MHz	1,50	1,00	0,66
Attenuation	350 MHz	2,50	1,50	1,20
20°C,dB/100	450 MHz	2,70	1,80	1,40
m	800 MHz	4,20	2,80	2,00
	900 MHz	4,50	3,50	2,20
	75 MHz	56/62	64/75	66/79
Coupling	150 MHz	62/72	71/81	68/79
Loss***	350 MHz	70/80	70/75	70/76
(50%/95%)	450 MHz	67/77	66/70	66/69
dB	800 MHz	62/63	64/70	63/66
	900 MHz	62/72	62/68	62/64
NOTES:	•	•	•	-

*

Bending Test Method is according to IEC 61196.1

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

Cable	s SWE	Connectors
Protec	$\overline{}$	Accessories
		- Inner Conductor Insulation Outer Conductor

Slots

RADIATING COAXIAL CABLES

Construction and Specifications

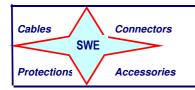
<u>I vpical application:</u> Suitable for public mobile telecommunication systems. It also covers 3G communication band and 2,4 GHz open frequency band, such as frequency bands used by mobile telecommunication operators.

RMC 50MH LC	OW LOSS SER	RMC 50MH-78L-1	RMC 50MH-114L-1	RMC 50MH-158L-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,40	13,20	18,30
	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	23,00	33,10	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	23,30	33,40	43,80
	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
JACKET	Diameter mm	27,60	37,50	48,50
MECHANICAL	PROPERTIES	5		
Bending radius	mm	280	381	508
Pulling strengh	Ν	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES			
Impedance	Ohm	50+/-1	50+/-1	50+/-1
Capacitance	pF/m	76	76	76
Propagation velo	ocity %	88	88	88
Insulation Dielec	tric Strenght kVI	10,0	10,0	15,0
Jacket spark tes	t voltage kVAC	8,0	10,0	10,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPL	LING LOSS**		
	150 MHz	1,50	1,10	0,70
	350 MHz	2,50	1,60	1,10
Nominal	450 MHz	2,70	1,90	1,30
Attenuation	800 MHz	4,10	2,80	1,90
20°C,dB/100	900 MHz	4,50	3,00	2,20
m	1.800 MHz	7,90	5,60	5,20
	2.200 MHz	10,26	6,20	4,60
	2.400 MHz	11,68	7,40	4,60
	150 MHz	65/77	82/92	77/86
	350 MHz	72/82	90/103	86/97
Coupling	450 MHz	77/89	90/103	88/100
Loss***	800 MHz	64/75	69/72	65/68
(50%/95%)	900 MHz	62/72	68/71	61/63
dB	1.800 MHz	60/66	59/65	53/55
	2.200 MHz	59/67	62/72	60/64
	2.400 MHz	60/68	60/70	60/70
NOTES:				

*

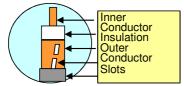
Bending Test Method is according to IEC 61196.1

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.


Cables	SWE Co	nnectors	RADIATING COA	KIAL CABLES
Protection		cessories	Construction and Sp	ecifications
	Insu Oute Con Slots	ductor lation ductor	<u>Typical application:</u> Suitable for multi-systems public network in	•
RMC 50LMH I	LOW LOSS SE	RMC 50LMH-78L-1	RMC 50LMH-114L-1	RMC 50LMH-158L-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,40	13,20	18,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
NUOLATUN	Diameter mm	23,00	33,10	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	23,30	33,40	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
	Diameter mm	27,60	37,50	48,50
MECHANICA	L PROPERTIES	;		
Bending radius	smm	280	381	508
Pulling strengt	N	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES			
Impedance	Ohm	50+/-1	50+/-1	50+/-1
Capacitance	pF/m	76	76	76
Propagation velo	ocity %	88	88	88
Insulation Dielec	tric Strenght kVI	10,0	10,0	15,0
Jacket spark tes	t voltage kVAC	8,0	10,0	10,0
Insulation Resist	tance Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ⁵
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPI	ING LOSS**		
	75 MHz	1,10	0,70	0,50
	150 MHz	1,50	1,10	0,70
Nominal	450 MHz	2,70	1,90	1,30
Attenuation	900 MHz	4,48	2,94	2,00
20°C,dB/100	1.800 MHz	7,70	5,46	3,30
m	2.200 MHz	10,10	6,10	4,00
	2.400 MHz	11,68	7,40	4,60
	2.600 MHz	13,90	9,68	5,40
	75 MHz	60/66	75/84	74/89
	150 MHz	65/77	82/92	76/85
Coupling	450 MHz	72/84	83/93	75/78
Loss***	900 MHz	66/74	72/79	69/71
(50%/95%)	1.800 MHz	62/70	68/74	64/68
dB	2.200 MHz	61/69	64/75	61/67
	2.400 MHz	60/68	59/70	60/69

NOTES:

Bending Test Method is according to IEC 61196.1


Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

** ***

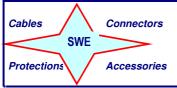
Construction and Specifications

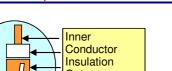
<u>Typical application:</u> Suitable for various types of analog, digital, wireless communication for which the operating frequency is less than 500 MHz, such as railways wireless dispatching on 450 MHz, public security and fire protection dispatching on 350MHz, communications in mine on 150MHzfrequency, etc.

RMC 50L SEF	RIES	RMC 50L-78-1	RMC 50L-114-1	RMC 50L-158-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,00	13,00	17,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	22,50	32,80	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	22,80	33,10	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
JAONET	Diameter mm	27,30	37,00	48,00

MECHANICAL PROPERTIES				
Bending radius	mm	280	380	485
Pulling strengh	Ν	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C

ELECTRICAL PRO	ELECTRICAL PROPERTIES				
Impedance	Ohm	50+/-1	50+/-1	50+/-1	
Capacitance	pF/m	76	76	76	
Propagation velocity	%	88	88	88	
Insulation Dielectric S	Strenght kVI	10,0	10,0	15,0	
Jacket spark test volt	age kVAC	8,0	10,0	10,0	
Insulation Resistance	Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³	
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td	


ATTENUATION	ATTENUATION and COUPLING LOSS**				
Nominal	75 MHz	1,06	0,83	0,56	
Attenuation	150 MHz	1,76	1,24	0,82	
20°C,dB/100	350 MHz	3,10	2,20	1,78	
m	450 MHz	3,40	2,30	1,90	
Coupling	75 MHz	56/60	58/67	66/71	
Coupling Loss***	150 MHz	61/67	63/71	68/76	
(50%/95%)	350 MHz	53/56	55/60	64/69	
dB	450 MHz	54/59	57/62	64/68	


NOTES:

**

Bending Test Method is according to IEC 61196.1

- Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.
- Coupling Loss values are given with a tolerance of +/- 5 dB.

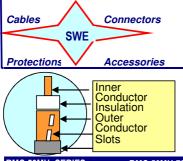
Outer

Conductor

RADIATING COAXIAL CABLES

Construction and Specifications

<u>Typical application:</u> Suitable for various types of analog, digital wireless communication for which the operating frequency is below 1000 MHz, such as the TETRA system, GSM-R railway wireless dispatching, the mobile telecommunication system, also suitable for the above systems that also have a coverage below 500 MHz in the same occasion.


RMC 50LM SE	RIES	RMC 50LM-78-2	RMC 50LM-114-2	RMC 50LM-158-2
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,00	13,00	17,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	22,50	32,80	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	22,80	33,10	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
	Diameter mm	27,30	37,00	48,00
MECHANICA	PROPERTIES	;		
Bending radius	mm	280	380	485
Pulling strengt	N	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES			
Impedance	Ohm	50+/-1	50+/-1	50+/-1
Capacitance	pF/m	76	76	76
Propagation velo	ocity %	88	88	88
Insulation Dielec	tric Strenght kVI	10,0	10,0	15,0
Jacket spark tes	t voltage kVAC	8,0	10,0	10,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPI	LING LOSS**		
	75 MHz	1,10	0,90	0,60
Nominal	150 MHz	1,90	1,30	0,90
Attenuation	350 MHz	2,90	2,10	1,70
20°C,dB/100	450 MHz	3,30	2,20	1,80
m	800 MHz	4,90	3,90	2,40
	900 MHz	5,30	4,30	2,70
	75 MHz	64/76	62/71	67/78
Coupling	150 MHz	68/80	67/80	74/86
Loss***	350 MHz	72/80	72/78	72/79
(50%/95%)	450 MHz	69/77	70/80	69/80
dB	800 MHz	63/71	62/68	63/67
	900 MHz	63/73	62/68	60/63

NOTES:

Bending Test Method is according to IEC 61196.1

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

** ***

Construction and Specifications

<u>Typical application:</u> Suitable for public mobile telecommunication systems. It also covers 3G communication band and 2,4 GHz open frequency band, such as frequency bands used by mobile telecommunication operators.

RMC 50MH S	ERIES	RMC 50MH-78-1	RMC 50MH-114-1	RMC 50MH-158-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,00	13,00	17,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	22,50	32,80	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	22,80	33,10	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
JACKET	Diameter mm	27,30	37,00	48,00
MECHANICA	L PROPERTIES	;		
Bending radius	mm	280	380	485
Pulling strengt	N	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES			
Impedance	Ohm	50+/-1	50+/-1	50+/-1
Capacitance	pF/m	76	76	76
Propagation velo	ocity %	88	88	88
Insulation Dielec	tric Strenght kVI	10,0	10,0	15,0
Jacket spark tes	t voltage kVAC	8,0	10,0	10,0
Insulation Resist	tance Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPI	LING LOSS**		
	150 MHz	1,51	1,11	0,83
	350 MHz	2,54	1,85	1,49
Nominal	450 MHz	2,78	1,97	1,58
Attenuation	800 MHz	4,28	2,91	2,30
20°C,dB/100	900 MHz	4,54	3,22	2,50
m	1.800 MHz	8,00	5,80	4,40
	2.200 MHz	10,30	7,00	5,70
	2.400 MHz	11,80	8,20	6,50
	150 MHz	65/77	74/82	77/84
	350 MHz	70/80	80/87	86/97
Coupling	450 MHz	72/84	80/87	88/92
Loss***	800 MHz	65/74	69/76	65/68
(50%/95%)	900 MHz	66/75	68/76	61/68
dB	1.800 MHz	62/70	61/68	57/65
	2.200 MHz	61/69	65/69	62/69
	2.400 MHz	60/68	62/68	66/72
NOTES:				

NOTES:

Bending Test Method is according to IEC 61196.1

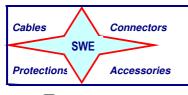
Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

** ***

Cables	SWE	nnectors
	Insu Oute	ductor lation er ductor
RMC 50LMH	SERIES	RMC 50LMH-78-1
INNER	Material	Smooth copper tube
CONDUCTOR	Diameter mm	9,0
INSULATOR	Material	Physically foamed PE
INSOLATOR	-	

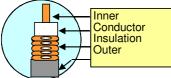
Construction and Specifications

<u>Typical application:</u> Suitable for the coverage of multi-systems public network in the subway


RMC 50LMH	SERIES	RMC 50LMH-78-1	RMC 50LMH-114-1	RMC 50LMH-158-1
INNER	Material	Smooth copper tube	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	9,00	13,00	17,30
INSULATOR	Material	Physically foamed PE	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	22,50	32,80	43,50
OUTER	Material	Overlapping copper foil	Overlapping copper foil	Overlapping copper foil
CONDUCTOR	Diameter mm	22,80	33,10	43,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE	PE or fire retardant PE
JACKLI	Diameter mm	27,30	37,00	48,00
MECHANICA	L PROPERTIES	;		
Bending radius	mm	280	380	485
Pulling strengt	N	2300	3000	1700
Recommende	Store	-70°C +85°C	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES			
Impedance	Ohm	50+/-1	50+/-1	50+/-1
Capacitance	pF/m	76	76	76
Propagation velo	ocity %	88	88	88
Insulation Dielec	tric Strenght kVI	10,0	10,0	15,0
Jacket spark tes	t voltage kVAC	8,0	10,0	10,0
Insulation Resist	tance Mohm - Kr	>5 x 10 ³	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--><td><!--= 1,3</td--></td></td>	= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPI	LING LOSS**		
	75 MHz	1,10	0,90	0,60
	150 MHz	1,51	1,11	0,85
Nominal	450 MHz	2,78	1,97	1,60
Attenuation	900 MHz	4,50	2,94	2,48
20°C,dB/100	1.800 MHz	8,50	5,84	4,10
m	2.200 MHz	10,80	8,08	5,30
	2.400 MHz	12,30	9,07	6,40
	2.600 MHz	14,00	10,27	7,30
	75 MHz	64/76	62/71	67/78
	150 MHz	65/77	77/83	79/86
Coupling	450 MHz	69/78	83/89	88/94
Loss***	900 MHz	69/75	68/79	64/72
(50%/95%)	1.800 MHz	64/72	65/72	61/65
dB	2.200 MHz	61/67	67/70	65/70
	2.400 MHz	60/68	66/74	68/72
	2.600 MHz	60/66	63/67	62/69
NOTES:	-	e.	-	-

NOTES

Bending Test Method is according to IEC 61196.1


Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

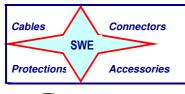
** ***

Construction and Specifications

<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

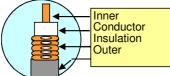
CMC 50S SEF	RIES	CMC 50S-38-1	CMC 50S-12-1
INNER	Material	Copper clad aluminium wire	Copper clad aluminium wire
CONDUCTOR	Diameter mm	3,1	5 4,8
INSULATOR	Material	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	8	2 12,2
OUTER	Material	Corrugated copper tube with single row milled slots	Corrugated copper tube with single row mill
CONDUCTOR	Diameter mm	9,5	53 13,8
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE
JAONET	Diameter mm	11	2 15,8

MECHANICAL	MECHANICAL PROPERTIES				
Bending radius	mm	30	80		
Pulling strengh	Ν	1100	1130		
Recommende	Store	-70°C +85°C	-70°C +85°C		
d	Installation	-40°C +60°C	-40°C +60°C		
Temperature	Operation	-55°C +85°C	-55°C +85°C		


ELECTRICAL PR	ELECTRICAL PROPERTIES				
Impedance	Ohm	50+/-1	50+/-1		
Capacitance	pF/m	76	76		
Propagation velocity	/ %	88	88		
Insulation Dielectric	Strenght kVI	2,5	6,0		
Jacket spark test vo	ltage kVAC	5,0	8,0		
Insulation Resistance	e Mohm - Kr	>5 x 10 ³	>5 x 10 ³		
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td		

ATTENUATIO	ATTENUATION and COUPLING LOSS*				
	150 MHz	4,90	3,30		
Nominal	450 MHz	8,50	6,60		
Attenuation 20°C.dB/100	900 MHz	12,10	9,50		
20 С,06/100 m	1.800 MHz	17,40	13,10		
	2.400 MHz		15,70		
	150 MHz	60/75	62/78		
Coupling Loss**	450 MHz	68/78	70/80		
Loss (50%/95%) dB	900 MHz	70/80	71/82		
	1.800 MHz	74/86	77/88		
	2.400 MHz		77/87		

NOTES:

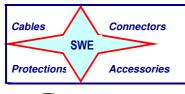

**

Attenuation and Coupling Loss are measured by the free space method according to IEC 61196.4. Coupling Loss values are given with a tolerance of +/- 10 dB.

Construction and Specifications

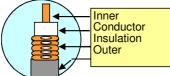
<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

CMC 50S SERIES		CMC 50S-58-1	CMC 50S-78-1
INNER	Material	Smooth copper tube	Smooth copper tube
CONDUCTOR	Diameter mm	7,05	9,00
INSULATOR	Material	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	18,00	22,50
OUTER	Material	Corrugated copper tube with single row milled slots	Corrugated copper tube with single row mill
CONDUCTOR	Diameter mm	19,80	24,90
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE
	Diameter mm	22,20	27,30


MECHANICAL PROPERTIES			
Bending radius	mm	100	140
Pulling strengh	Ν	1150	1500
Recommende	Store	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C

ELECTRICAL PR	ELECTRICAL PROPERTIES				
Impedance	Ohm	50+/-1	50+/-1		
Capacitance	pF/m	76	76		
Propagation velocity %		88	88		
Insulation Dielectric Strenght kVI		6,0	10,0		
Jacket spark test vo	ltage kVAC	8,0	8,0		
Insulation Resistance Mohm - Kr		>5 x 10 ³	>5 x 10 ³		
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td		

ATTENUATIO	and COUPLING LOSS*		
	150 MHz	2,40	1,80
Nominal Attenuation	450 MHz	4,30	3,60
20°C,dB/100	900 MHz	6,40	5,10
m	1.800 MHz	9,60	7,60
	2.400 MHz	11,40	9,00
	150 MHz	70/80	66/76
Coupling	450 MHz	74/83	72/80
Loss** (50%/95%)	900 MHz	72/83	74/85
dB	1.800 MHz	68/79	80/87
	2.400 MHz	73/82	78/88
NOTES:			


*

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4. Coupling Loss values are given with a tolerance of +/- 10 dB.

Construction and Specifications

<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

CMC 50S SERIES		CMC 50S-78L-1	CMC 50S-114-1
INNER	Material	Smooth copper tube	Smooth copper tube
CONDUCTOR	Diameter mm	9,4	0 13,00
INSULATOR	Material	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	23,0	32,80
OUTER	Material	Corrugated copper tube with single row milled slots	Corrugated copper tube with single row mill
CONDUCTOR	Diameter mm	25,4	35,80
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE
JACKLI	Diameter mm	28,0	38,80

MECHANICAL	MECHANICAL PROPERTIES			
Bending radius	mm	150	200	
Pulling strengh	N	1700	2500	
Recommende	Store	-70°C +85°C	-70°C +85°C	
d	Installation	-40°C +60°C	-40°C +60°C	
Temperature	Operation	-55°C +85°C	-55°C +85°C	

ELECTRICAL PR	ELECTRICAL PROPERTIES				
Impedance	Ohm	50+/-1	50+/-1		
Capacitance	pF/m	76	76		
Propagation velocity %		88	88		
Insulation Dielectric Strenght kVI		10,0	10,0		
Jacket spark test vo	ltage kVAC	8,0	10,0		
Insulation Resistance Mohm - Kr		>5 x 10 ³	>5 x 10 ³		
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td		

ATTENUATIO	N and COUPL	ING LOSS*	
	150 MHz	1,70	1,30
Nominal	450 MHz	3,40	3,00
Attenuation 20°C,dB/100	900 MHz	5,10	4,00
m	1.800 MHz	7,40	5,60
	2.400 MHz	8,80	6,90
	150 MHz	66/75	70/80
Coupling	450 MHz	72/80	75/85
Loss** (50%/95%)	900 MHz	72/82	77/86
(30 %/93 %) dB	1.800 MHz	70/81	77/88
	2.400 MHz	69/80	78/88
NOTES:			

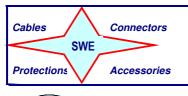

*

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4. Coupling Loss values are given with a tolerance of +/- 10 dB.

Construction and Specifications

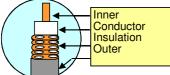
<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

CMC 50S SERIES		CMC 50S-158-1	
INNER	Material	Helically corrugated copper tube	
CONDUCTOR	Diameter mm	17,30	
INSULATOR	Material	Physically foamed PE	
	Diameter mm	43,50	
OUTER	Material	Corrugated copper tube with single row milled slots	
CONDUCTOR	Diameter mm	46,50	
JACKET	Material	PE or fire retardant PE	
	Diameter mm	49,50	


MECHANICAL	MECHANICAL PROPERTIES				
Bending radius	mm	280			
Pulling strengh	N	3000			
Recommende	Store	-70°C +85°C			
d	Installation	-40°C +60°C			
Temperature	Operation	-55°C +85°C			

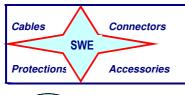
ELECTRICAL PRO	PERTIES		
Impedance	Ohm	50+/-1	
Capacitance	pF/m	76	
Propagation velocity %		88	
Insulation Dielectric Strenght kVI		15,0	
Jacket spark test voltag	ge kVAC	10,0	
Insulation Resistance Mohm - Kr		>5 x 10 ³	
VSWR		= 1,3</td <td></td>	

	150 MHz	0,80	
Nominal	450 MHz	2,00	
Attenuation 20°C,dB/100	900 MHz	2,70	
n	1.800 MHz	4,40	
	2.400 MHz	5,60	
o "	150 MHz	72/84	
Coupling _oss**	450 MHz	79/85	
_oss (50%/95%)	900 MHz	79/85	
dB	1.800 MHz	80/86	
	2.400 MHz	82/88	


^{*}

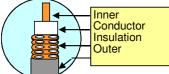
 $\label{eq:linear} \mbox{Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.$

Construction and Specifications



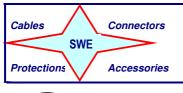
<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

CMC 50D LOV	V LOSS SERIE	CMC 50D-12L-1	CMC 50D-78L-1
INNER	Material	Copper clad aluminium wire	Smooth copper tube
CONDUCTOR	Diameter mm	4,80	9,40
INSULATOR Material I		Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	12,20	23,00
OUTER	Material	Corrugated copper tube with double row milled slots	Corrugated copper tube with double row mi
CONDUCTOR	Diameter mm	13,80	25,40
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE
	Diameter mm	15,80	28,00
MECHANICAL	PROPERTIES		
Bending radius	mm	80	140
Pulling strengh	N	1130	1500
Recommende	Store	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES		
Impedance	Ohm	50+/-1	50+/-1
Capacitance	pF/m	76	76
Propagation velo	ocity %	88	88
Insulation Dielec	tric Strenght kVI	6,0	10,0
Jacket spark test	t voltage kVAC	8,0	8,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPI	LING LOSS*	
	150 MHz	3,15	1,75
Manala al	450 MHz	5,70	3,05
Nominal Attenuation	900 MHz	8,40	4,40
20°C,dB/100	1.800 MHz	13,10	6,80
m	1.900 MHz	13,60	7,00
	2.200 MHz	14,70	7,80
	2.400 MHz	15,30	8,30
	150 MHz	59/71	66/75
	450 MHz	67/79	75/86
Coupling Loss**	900 MHz	66/78	73/83
Loss** (50%/95%)	1.800 MHz	68/80	70/81
(50%/95%) dB	1.900 MHz	69/81	70/81
	2.200 MHz	70/82	70/81
	2.400 MHz	70/82	68/80
NOTES:			
*	Attonuation on	d Couplingt oss are measured by the free space meth	ad according to JEC 61106 4


*

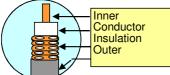
Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

Construction and Specifications



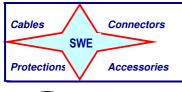
<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

CMC 50D LOW LOSS SERIE		CMC 50D-114L-1	CMC 50D-158L-1
INNER	Material	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	13,20	18,30
	Material	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	33,10	43,50
OUTER	Material	Corrugated copper tube with double row milled slots	Corrugated copper tube with double row mi
CONDUCTOR	Diameter mm	35,80	46,50
	Material	PE or fire retardant PE	PE or fire retardant PE
JACKET	Diameter mm	39,40	50,30
MECHANICAL	PROPERTIES		
Bending radius	mm	200	280
Pulling strengh	N	2500	3000
Recommende	Store	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES		
Impedance	Ohm	50+/-1	50+/-1
Capacitance	pF/m	76	76
Propagation velo	city %	88	88
Insulation Dielect	tric Strenght kVI	10,0	15,0
Jacket spark test	voltage kVAC	10,0	10,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPL	LING LOSS*	
	150 MHz	1,22	0,86
	450 MHz	2,22	1,60
Nominal Attenuation	900 MHz	3,31	2,42
20°C,dB/100	1.800 MHz	5,18	3,80
m	1.900 MHz	5,35	3,94
	2.200 MHz	5,92	4,36
	2.400 MHz	6,19	4,65
	150 MHz	70/80	70/80
	450 MHz	81/93	83/93
Coupling	900 MHz	80/92	82/92
Loss** (50%/95%)	1.800 MHz	77/88	81/91
(50%/95%) dB	1.900 MHz	76/88	80/90
U D	2.200 MHz	77/88	80/90
	2.400 MHz	79/90	80/90
NOTES:	-		


**

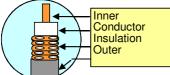
Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

Construction and Specifications



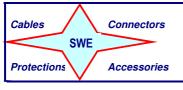
<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

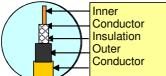
CMC 50D SERIES		CMC 50D-12-1	CMC 50D-78-1
INNER	Material	Copper clad aluminium wire	Smooth copper tube
CONDUCTOR	Diameter mm	4,80	9,00
INSULATOR	Material	Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	12,20	22,50
OUTER	Material	Corrugated copper tube with double row milled slots	Corrugated copper tube with double row mi
CONDUCTOR	Diameter mm	13,80	24,90
JACKET	Material	PE or fire retardant PE	PE or fire retardant PE
JACKET	Diameter mm	15,80	27,30
MECHANICAL	PROPERTIES		
Bending radius	mm	80	140
Pulling strengh	N	1130	1500
Recommende	Store	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES		
Impedance	Ohm	50+/-1	50+/-1
Capacitance	pF/m	76	76
Propagation velo	city %	88	88
Insulation Dielec	tric Strenght kVI	6,0	10,0
Jacket spark test	t voltage kVAC	8,0	8,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPL	LING LOSS*	
	150 MHz	3,21	1,80
	450 MHz	5,80	3,30
Nominal Attenuation	900 MHz	8,60	5,00
20°C,dB/100	1.800 MHz	13,50	8,70
m	1.900 MHz	13,90	9,00
	2.200 MHz	14,70	9,70
	2.400 MHz	15,50	10,10
	150 MHz	57/69	65/77
	450 MHz	66/78	72/84
Coupling	900 MHz	66/78	72/84
Loss** (50%/95%)	1.800 MHz	67/79	68/80
(50%/95%) dB	1.900 MHz	70/82	68/80
u D	2.200 MHz	78/90	69/81
	2.400 MHz	83/95	68/80
NOTES:			


**

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

Construction and Specifications




<u>Typical application:</u> As a wide leaky coaxial cable, wireless mobile telecommunication, wireless remote control, wireless dispatch, wireless alarming system and so on.

CMC 50D SERIES		CMC 50D-114-1	CMC 50D-158-1
INNER	Material	Smooth copper tube	Helically corrugated copper tube
CONDUCTOR	Diameter mm	13,00	17,30
Material		Physically foamed PE	Physically foamed PE
INSULATOR	Diameter mm	32,80	43,50
OUTER	Material	Corrugated copper tube with double row milled slots	Corrugated copper tube with double row mi
CONDUCTOR	Diameter mm	35,80	46,50
	Material	PE or fire retardant PE	PE or fire retardant PE
JACKET	Diameter mm	39,40	49,50
MECHANICAL	PROPERTIES		
Bending radius	mm	200	280
Pulling strengh	N	2500	3000
Recommende	Store	-70°C +85°C	-70°C +85°C
d	Installation	-40°C +60°C	-40°C +60°C
Temperature	Operation	-55°C +85°C	-55°C +85°C
ELECTRICAL	PROPERTIES		
Impedance	Ohm	50+/-1	50+/-1
Capacitance	pF/m	76	76
Propagation velo	city %	88	88
Insulation Dielect	tric Strenght kVI	10,0	15,0
Jacket spark test	voltage kVAC	10,0	10,0
Insulation Resist	ance Mohm - Kr	>5 x 10 ³	>5 x 10 ³
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td
ATTENUATIO	N and COUPL	ING LOSS*	
	150 MHz	1,35	1,03
	450 MHz	2,51	1,97
Nominal Attenuation	900 MHz	3,81	3,00
20°C,dB/100	1.800 MHz	6,20	4,80
m	1.900 MHz	6,40	4,93
	2.200 MHz	7,20	5,40
	2.400 MHz	7,40	5,80
	150 MHz	70/82	74/86
	450 MHz	77/89	80/92
Coupling	900 MHz	66/87	79/91
Loss**	1.800 MHz	72/84	74/86
(50%/95%) dB	1.900 MHz	74/86	76/88
ub	2.200 MHz	77/89	83/95
	2.400 MHz	79/91	85/97
NOTES:			

**

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4.

Construction and Specifications

<u>Typical application:</u> Suitable for voice communication and data collection and so on inside the coal mine.

CMC 50B SERIES		CMC 50B-9	CMC 75B-9	
INNER	Material	Copper clad aluminium wire	Copper clad aluminium wire	
CONDUCTOR	Diameter mm	3,50	2,00	
INSULATOR	Material	Physically foamed PE	Physically foamed PE	
	Diameter mm	8,80	8,80	
OUTER	Material	Sparsely braided copper wire	Sparsely braided copper wire	
CONDUCTOR	Braiding Covera	40%-50%	40%-50%	
FIRST	Material	Black LPDE	Black LPDE	
JACKET	Diameter mm	11,70	11,70	
SECOND	Material	Yellow fire retardant PVC	Yellow fire retardant PVC	
JACKET	Diameter mm	15,80	13,70	

MECHANICAL PROPERTIES				
Bending radius	mm	125	125	
Recommende	Store	-20°C +80°C	-20°C +80°C	
d	Installation	0°C +60°C	0°C +60°C	
Temperature	Operation	-20°C +80°C	-20°C +80°C	

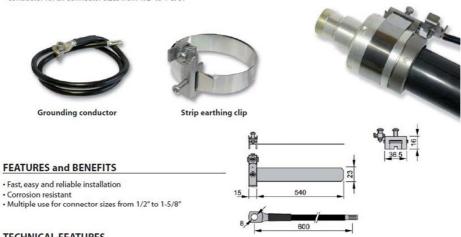
ELECTRICAL PR	ELECTRICAL PROPERTIES				
Impedance	Ohm	50+/-1	75+/-2		
Capacitance	pF/m	76	50		
Propagation velocity	v %	86	86		
Insulation Dielectric	Strenght kVI	1,0	1,0		
Jacket spark test vo	ltage kVAC	3,0	3,0		
Insulation Resistance	e Mohm - Kr	>5 x 10 ³	>5 x 10 ³		
VSWR		= 1,3</td <td><!--= 1,3</td--></td>	= 1,3</td		

ATTENUATIO	ATTENUATION and COUPLING LOSS*					
Nominai	60 MHz	3,70	3,70			
Attenuation 20°C,dB/100	150 MHz	5,70	5,20			
20 C,0B/100 m	900 MHz	9,70	9,70			
Coupling Loss**	60 MHz	80	75			
Loss** (50%/95%)	150 MHz	70	75			
(50 %/95 %) dB	900 MHz	70	70			

NOTES:

**

Attenuation and CouplingLoss are measured by the free space method according to IEC 61196.4. Coupling Loss values are given with a tolerance of +/- 10 dB.



]		DIMENSIONI CAVI RADIANTI			
		1/2''	7/8"	1 1/4"	1 5/8"
ES	N Male	SWR12NM0	03SWR78NM0001	03SWR114NM001	03SWR158NM001
IECTOR TYPES	N Female	SWR12NF0	03SWR78NF0001	03SWR114NF001	03SWR158NF001
	7/16 Male	SWR12M71	03SWR78M71601	03SWR114M7161	03SWR158M7161
CONNE	7/16 F emale	SWR12F716	03SWR78F71601	03SWR114F7161	03SWR158F7161

PRODUCT DESCRIPTION

All-purpose earthing clip with 16 mm² grounding conductor for all connector sizes from 1/2" to 1-5/8".

TECHNICAL FEATURES

Strip earthing clip		
 Tightening block and screws material 		Nickel-plated brass
Tightening strap material		Stainless steel
Clamping diameter range	mm	10 150
Connection options	mm ²	max. 2 conductors 2.5 - 25
Grounding conductor		
Insulation		PVC (free of lead)
• Color		black
Cross section	mm ²	16 (copper)
• Length	mm	600
· Cable lug	mm	16 x 8
 Screw: Stainless steel, hex socket cap screw 	mm	M6 x 20

PRODUCT OVERVIEW

Product reference	Contents
· 11.700.000-371	1 strip earthing clip
	 1 earth lead (60 cm) with attached lug + M6 + washer + nut

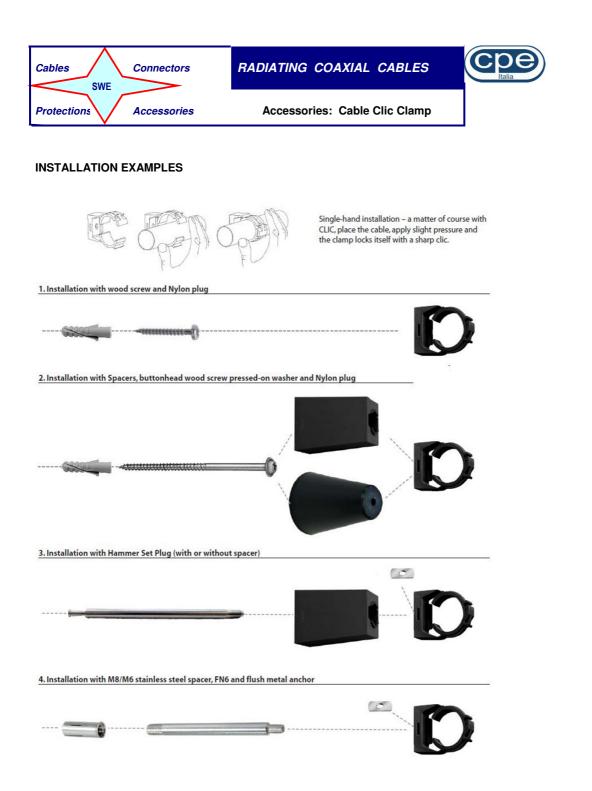
PRODUCT DESCRIPTION

Clic clamps are used for installing radiating cables in galleries and tunnels with or without spacers. The installation is very simple and quick.

FEATURES and BENEFITS

- · Lock with 1 or 2 locking positions
- Automatic locking by pushing cable into clamp, reusable
 Unlocks with screwdriver
 Pivoted hangers allow installation down to -25°C
- Slot design allows installation correction of up to 4.5 mm
- Slot for insertion of flange for rod and stud mounting

TECHNICAL FEATURES

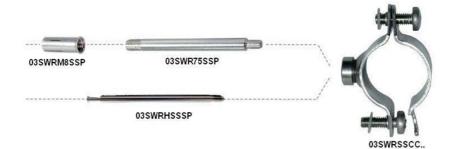

Clic type		Clic Clamp				
Material		Pure Polyamide, halogen free,				
		fire class UL94HB, UV-resistant				
Environmental						
Operating Temp	erature	°C		-40 to +110		
Installation Temp	perature	°C	℃ -25 to +60			
Color standard: black						
			grey (F	RAL 7035) by reques	t	
Clic type		for 1/2"	for 5/8"	for 7/8"	for 1-1/4"	for 1-5/8"
Clamping range	mm	14.3 - 16.8	19.5 - 22.0	24.6 - 27.8	35.5 - 39.5	46.5 - 50.5
• Max. load	N	600	700	850	1100	1300
Part reference		03SWRCLIC012	03SWRCLIC058	03SWRCLIC078	03SWRCLIC114	03SWRCLIC15

SPACERS and ACCESSORIES

Reference	Description	Use with	Picture
Spacers			
• 03SWR80SRB	Round base spacer 80 mm	03SWR125WS , 03SWRM6HSH	
• 03SWR45SRB	Rectangular base spacer 45 mm	03SWR085WS	
• 03SWR85SRB	Rectangular base spacer 85 mm	03SWR125WS	
•03SWR75SSP	Stainless steel spacer 75 mm	03SWRM8SSP , 03SWRM6SSN	
Flat nuts			
• 03SWRM6SSN	Flat nut M6, stainless steel	All clic clamps	0
Wood screws, stain	nless steel		
• 03SWR040WS	Wood screw 4.5 x 40 Clic Clamp without space	er	
• 03SWR085WS	Wood screw 4.5 x 85	03SWR45SRB	A
• 03SWR125WS	Wood screw 4.5 x 125	03SWR85SRB or 03SWR80SRB	<u></u>
Bolt with metric th	rread, stainless steel		
• 03SWRM6HSH	M6 x 90, hex socket head	03SWR80SRB , 03SWRM6SSP	
Plugs		-	
• 03SWR45PWS	Nylon plug for wood screw diameter 4.5 mm	Wood screws	TANK
• 03SWRM6SSP	Stainless steel plug M6	Bolt 03SWRM6HSH	-
• 03SWRM8SSP	Stainless steel plug M8	Spacer 03SWR75SSP	
• 03SWRHSSSP	Stainless steel hammer set plug	03SWRM6SSN, 03SWR85SRB	
• 03SWRHSPDR	Drill for installation of the hammer set plugs	03SWRHSSSP	

PRODUCT DESCRIPTION

Stainless Stell Cable Clamps are used to provide Fire Resistant installations of Radiating Cables in galleries or tunnels with or without spacers. The installation is very simple and quick. To limit the interference that could be caused by Metal Objects on the RF Field generated by a Radiating Cable, only every 10th fixing should be metallic.


Stainless Steel Cable Clamp

Cable type	Clamp type	Use with
• 1/2"	03SWRSSCC20	Hammer set plug
• 5/8"	03SWRSSCC25	03SWRHSSSP
• 7/8″	03SWRSSCC32	or
• 1-1/4"	03SWRSSCC46	Stainless Steel spacer
• 1-5/8″	03SWRSSCC50	03SWR75SSP

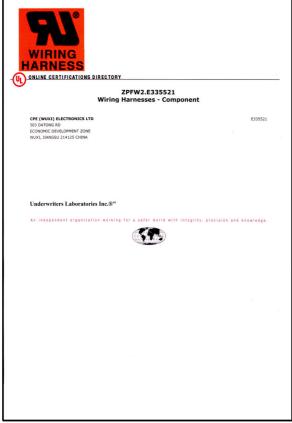
TECHNICAL FEATURES

Clamp Type	Ø min. mm	Max. Load (N)	
· 03SWRSSCC20	13	450	
· 03SWRSSCC25	18	380	
· 03SWRSSCC32	24	300	
· 03SWRSSCC46	39	230	
· 03SWRSSCC50	51	180	

Installation with M8/M6 spacer and stainless steel clamp

Starwire®

Quality Certifications (obtained & maintained so far)





WIRING HARNESS (U) ONLINE CERTIFICATIONS DIRECTORY	
UL Online Certifications Directory	
ZPFW2.E327870 Wiring Harnesses - Component	
CPE ITALIA SPA	E327870
VIA D.CHIASSERINI 15 20157 MILANO, MI ITALY	
Underwriters Laboratories Inc.®"	
An independent organization working for a safer world with integrity, p	recision and knowledge.
An independent organization working for a safer world with integrity, p	recision and knowledge.
An independent organization working for a safer world with integrity, p	recision and knowledge.
An independent organization working for a safer world with integrity, p	recision and knowledge
An independent organization working for a safer world with integrity, p	recision and knowledge

Starwire [®] Quality & Environmen	Starwire [®]	Ouality &	Environment
--	-----------------------	-----------	-------------

Cables Connectors	RADIATING COAXIAL CABLES	CDE
Protections Accessories	Notes	

Starwire®

Sales Network

1-CPE Italia GROUP (Headquarter, Technical Operation & Lab)

Via Chiasserini, 15 20157 Milano (Italy) Ph. +39 (0) 2.390961 Fax +39 (0) 2.3570774 info@cpeitalia.it

2-CPE Italia

(Main Italian Production Plant)

Via Appia, Km. 196,150 81041 Vitulazio - CE (Italy) Ph. +39 (0) 823.969180 Fax +39 (0) 823.997318 info@cpeitalia.it

3-CPE East Europe

Str. Pitesti, 222 Slatina - OLT (Romania) Ph. +40 249414262 Fax +40 249414262 sales@cpeitalia-group.com

4-CPE do Brasil (Ind. & Com. Ltda)

> Rua Inaja, 698 - Vila E. Perneta BR-83.324.050 PINHAIS-PR/Brasil Ph. +55 41 30336883 Fax +55 41 36686883 info@cpedobrasil.com.br

5-CPE WuXi Electronics Ltd.

n.503 Da Tong Road Bin Hu District, WuXi City, JiangSu Province P.R. China, 214124 Ph. +86 (0) 510 85189768 Fax +86 (0) 510 85188016 sales@cpeitalia.com 6-CPE China (Shanghai Office)

> Rm 2205, n.58 JinXin Road JinQiao, Pudong, Shanghai P.R. China, 201206 Ph. +86 (21) 503 20587 Fax +86 (21) 503 20587 sales@cpeitalia.com

STARWIRES ENGINEERING-SWE

n.503 Da Tong Road Bin Hu District, WuXi City, JiangSu Province P.R. China, 214124 Ph. +86 (0) 510 85189768 Fax +86 (0) 510 85188016 sales@cpeitalia.com

Broadcasting

Avionics Aerospace

Navy

Research Institutes

STARWIRES ENGINEERING - SWE n.503 Da Tong Road Bin Hu District, WuXi City, JiansgSu Province P.R. China, 214124 Tel. 0086.51085189768 - Fax. 0086.51085188016 E-mail: sales@starwires-engineering.com